Data, dynamics, and manifolds




Complex dynamics with many degrees of freedom

* In many applications we have large amounts of high-dimensional data from experiments or high-resolution simulations
* Dynamics may be very complex in space and time
* Modeling is computationally expensive and limits simulation-based design and control applications

[Turbulent Fluid Flow ] [ Microstructure in a complex fluid ]
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Aim: Data-based modeling of complex systems, especially in fluid mechanics —keeping only
essential degrees of freedom.
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Data, dynamics, and manifolds

Manifold and local regions (“charts”) with

Manifold: generalization of curve or surface — can locally their own coordinate r?prese?(?vf)[ons
represent with Cartesian coords. : °

* Dynamics: invariant manifolds are surfaces in state space that
trajectories stay on forever, and a stable manifold is

approached by nearby trajectories » e
* Invariant manifolds organize dynamics and contain long- State space of a dynamical system with a stable manifold -
time behavior arrows are trajectories
 Diffusion/viscosity = strong damping of short I T et ot | _
wavelengths = long-time dynamics of dissipative PDEs
lie on a finite-dimensional invariant manifold f\ﬁ \
7
* Machine learning: “Manifold hypothesis”: idea that real-
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world data in d dimensions lies on a manifold with far fewer
dimensions — partial explanation for the success of neural
networks to represent and classify data.

_ _ _ Initial conditions approaching a )
* Unless the data is very simple, we don’t know in advance the  stable oscillatory solution (1D \/
dimension on the manifold it lies on. manifold) e
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Data, dynamics, and symmetry

Exploiting symmetry enables more effective use of data

Duan et al Sci Rep 201 - -
° Schiller-Schmiedel [14]

Lt 1 Independence of physical laws from units of measurements = a form of dilation
Wieselberger [14] . . .

Voo Sackeou 15 symmetry > dimensional analysis
o ° Brown-Lawler [17]

Drag force, velocity, viscosity, density, diameter = drag coefficient, Reynolds number

Flow around a sphere
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Periodic domain & translation equivariance
— data can be separated into pattern and phase -- i.e. we don’t have to learn
separate representations of the same pattern at different rotation angles

State space for State space for chaotic Kolmogorov flow

pendulum

Symmetries in physical space lead to symmetries between different
parts of state space

- we only have to capture dynamics in part of state space and
symmetry gives us the rest

-3

= N ' | ' ) Linot & G, PRE 2020, Zeng & G. PRE 2021, Perez de Jesus & G. 2023
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Overview: toward minimal data-driven models of complex dynamics

“Data-driven manifold dynamics (DManD)”

Overall Aim: From data, efficiently/minimally approximate and the dynamics on it for complex/chaotic processes
* Short-time predictions (always limited quantitatively for chaotic systems)
* Long-time statistics — overall “shape” of the dynamics in state space
» Coordinate transformations between full state space H and lower-dimensional manifold M
» Reduced description contains the essential structures of the flow -- autoencoders
» Combine clustering with local representations to obtain global minimal-dimensional representations
» ODE models for the dynamics on the manifold (again in neural network form)
o Respect Markovian nature of the original dynamical system
o Allow effective use of widely spaced data — no time derivatives should need to be estimated from data
» Exploit continuous and discrete symmetries
» Allow for actuation and exploit low-dimensional representation for control

» Apply to complex flow problems — a particular target is drag reduction in wall turbulence

Other manifold-based approaches: Kevrekidis, Koumoutsakos, Haller,...
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Basic Framework

Mapping to Manifold Coordinates (Autoencoder) Evolution in Manifold Coordinates (Neural ODE)

Data (already processed through autoencoder)

Input | [u(t1),u(ta), ..., u(tpr)] Input (1), h(t2), s h(tnr)]
Output [u(tl),u(tg), ...,u(tM)] Output | |[h(t1 +7),h(ta +7),..., h(tp + 7)]
‘ ti—|—’7'
. M - . ~
Loss | min D .7 [|u; — X(x(wi; 01); 02)|[° “ Loss mlﬂz |AR(E; +7) —/ g(n(t); ¢) dt||?
91792 ¢ i \ t; }
1 - \ NN parameters . . .
NN parameters Prediction u; Tlme-lntegraluon of ODE
* It can be advantageous to work in the PCA basis -- * To determine gradient of loss
efficiency, interpretability e Treat ODE as constraint, use adjoint method
*  Symmetry reduction (split out spatial phase from pattern) * Orjust do automatic differentiation through an
improves representation ODE solver

* Adding an explicit dissipative term can stabilize
@\ Linot and G., PRE (2020), Chaos (2022). Perez De Jesus and G. PRF (2023) JE (Linot et al 2023) Chen et al., NeurlPS (2018)
WI
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Data-driven manifold dynamics of turbulent

Couette flow
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Minimal turbulent Couette flow: the essence of near-wall turbulence

Turbulence near walls has a universal basic structure:

Quasistreamwise vortices

Low- and high-speed streaks as slow- and fast-moving fluid
is carried around by the vortices

“Streak breakdown” events with strong three-
dimensionality

Characteristic spacing in units based on wall shear stress

Plane Couette flow at low Reynolds number in small domains is
the minimal physical system that displays this structure:

“Minimal flow unit” (MFU) (Hamilton, Kim, Waleffe 1995)
Fully resolved simulation (32x35x32x3)=10° dimensions at
Re=400

2h
aminar profile

L
) U/ i /
. L.h

-
!

U
> v —wall normal
Ct
/ x — streamwise

z — spanwise

L.h

[ Streamwise velocity evolution ]

Pipe flow

(Ceci et al 2021)

What'’s the actual minimal number of dimensions required to capture this flow?
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Manifold dynamics: plane Couette flow (10> = 18 dimensions)

Short-time predictions Long-time statistics
Reliably tracks dynamics through “streak Much better performance than POD Galerkin
V4 H
preakdpwn proce§s that characterizes RMS POD mode amplitudes POD-Galerkin (i.e data + governing
intermittent behavior in near-wall turbulence @ (d=18) @ equation) (Gibson 2002)
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Linot & G. JFM (2023)
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DManD with local representations and models

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON



Global intrinsic-dimensional representation of a manifold

Example: global Cartesian representation of a torus is not possible
in two dimensions — need to embed in 3D.

A

Why complicate our lives with this more complex representation?

Working representation of a manifold: an atlas of charts

Chart: 2 ingredients

1. Anopen subset of M (the coordinate domain V)

2.  Acontinuous, one-to-one map ¢ taking us from U € M C
R™to (V) = R?

Atlas: a collection of charts whose (Cartesian) coordinate domains

cover M

1.  Patch the manifold into overlapping coordinate domains
(k-means clustering)
2. For each patch, train an autoencoder

 Necessary for minimal-dimension representation of an arbitrary manifold (e.g. torus) — any standard

global manifold representation is a “one-chart” method and cannot be minimal-dimensional in general
 Advantageous for systems with complex dynamics such as intermittency — different structure to dynamics

in different parts of state space

* Natural formalism for systems with discrete symmetries — charts related by symmetry operations

“Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds = CANDyMan”

0.4

Floryan & G. Nature Mach Int 2022, Fox et al, PRE (2023), Perez De Jesus et al ArXiv (2023)
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A challenging problem: bursting dynamics of a PDE

Data from Kuramoto-Sivashinsky equation
6
Re(a,) ¢ X
0 - ODe
6 Im(ul)L . -
Re(ug) ) e

Atlas with
6 charts

3-dimensional dynamical model

6
Re(ﬁl)

0
0 50 100 150 O Re(is)

Key challenges:

* Disparate time scales: fast bursts
between quiescent cells

* Very thin state space structure

* Sensitive, non-periodic dynamics

CANDyMan:

» Captures structure of attractor in 3D
model

* The only quantitative discrepancy is the
length of the quiescent portions

* Sensitivity of quiescent periods to
model error arises from logarithmic
divergence of time spent near saddle
points

“One-chart” method fails badly even at 6
dimensions — cannot capture shape of
attractor

i Q; UNIVERSITY OF WISCONSIN-MADISON
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How many dimensions?
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Formulation: IRMAE-WD

Classical autoencoder (AE) Implicit rank-minimizing autoencoder with weight-decay (IRMAE-WD)

4 ) (1)

Implicit Regularization

2
A Regularization x () Compute Latent Basis, x
Singular Values

|
RY R RY Seq. Linear Layers :
\_ ) _ | .
|
4 | N -
Framework automatically learns a latent space to span Framework utilizes several low-rank driving forces:
only the “minimal necessary directions needed to * Implicit regularization>23!: internal linear layers
parameterize the data: A\ drive/accelerate convergence to low rank latent space
L(w;0r,0p) = (||lu—D(E(u;0r);0p)|]*) + = HwH2 «  Weight decay A “: breaks degeneracies in SGD dynamics
\_ 2 ), introduced by linear layers —prevents "drift" of trailing
~N singular values
Only need to train one model to estimate d ,,;, whereas Performing PCA on the learned latent space yields:
other AE methods require training an array of models * Manifold dimension: singular value spectra of covariance
* Manifold coordinates: singular vectors
- J i . Y
[1]: Arora et al., Neurips 2019
[2]: Gunasekar et al., Neurips 2019
[3]: Jing et al., Neurips 2020 )
[4]: Mousavi-Hosseini et al., ArXiv 2022 Zeng & G. ArXiv 2023
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Dimension vs domain size: Kuramoto-Sivashinsky

* We apply our method to the Kuramoto-Sivashinsky Eq. for
increasingly large domain sizes of L=22, 44, 66, 88
» We achieve accurate & precise estimates for larger domain

isi]zes L and demonstrate linear scaling in manifold dimension
1

» Can use for dynamic model as above

Ql]: Yang, PRL 2009
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What’s next?

KSE dynamics with large scale forcing:

> More Complex SyStemS hierarchical AE/NODE
» Improved methods to estimate manifold dimension and representation (TDA ™ {400/ j
. . . 7 /f;\‘\&,/\\ ,\ 7 2% ,/f
tools, improvements over simple clustering) - gf;:}:;i’ A A A NIE
» Distributed/hierarchical models for systems with multiscale dynamics TN A/AR
» Approximate methods for dynamics with very high dimension — keep the
“thick” directions, model the “thin” ones )
» Building more physics into data-driven reduced-order models 1
» Improved robustness for IRMAE-WD in high-dimensional ambient spaces - A 0 s
> Data-driven modeling of microstructure and stress in flowing complex fluids: il 0 )
. . . o 0 200 400
dynamic symmetry — material frame indifference t
DManD predictions of x-ray scattering pattern along a streamline DbTaED model of sedimenting erX|bI(|e fiber
Young et al Rheol Acta 2023 (blac —:irue, red — 4D DManD model)
010 Data lab frame 010 Model lab frame  /r(q)
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