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M What are some successes in “Al for Science” ?

AERDSPAGE. * Materials property descriptions, discovery & design
Protein structure

Drug discovery, Genetics

Imaging and segmentation (in most discipline)

Clustering/Classification (in most disciplines)

UNIVERSITY OF MICHIGAN

Why the above problems?

* Discreteness (or “discretizability”) of underlying spaces
=>» Text, graphs, categorization, binarization, sequences, etc
* “Discoverability” of somewhat universal features
* Diverse, (mostly) complete and high quality data
* Data standardization
e Modularity of tasks
* Deficiencies in existing methods!
* We know what questions to ask !!




Optimizing gas
delivery in complex
well networks
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* Goal to maximize revenue by
finding ideal gas
distribution across multiple sales
points

* Limited by short decision time
scales, network complexity, and
sensor data sparseness

Optimizing gas
dellvery In Complex Al models matching

we || networks simulation accuracy used for

rapid "what-if” analysis and

optimization of distribution to

multiple sales points 168 control inputs
Intelligent advisor app

powered by Al model provides

interactive capabilities, in real

time
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« Ability to optimize online in short decision time frames (near real time)
handling high dimensionality

Sem https://demo.geminus.ai/network » Easily adaptable to changes in network topology
eminus




<> Geminus Al

Application

Sink Configuration Pad Configuration Network Line Pressure
Delivery Site Selection: Pad Selection: Pressure at Network Location (psi)

Sink A Pad1

Interactive Demo

50

Sink Choke Size (|

Geminus-powered
intelligent advisor for
well network 14.03 .74 72.36
optimization
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Sink Latitude Sink Longitude Pad Latitude Pad Longitude

31.932 -102.860 31.863 -102.715

Confidential

Optimization Configuration
Delivery Site Selection: Sink A: Sale Price ($/mmscf/d) Max Line Pressure:

Sink A $7,500.00 210

Sink A: Min Commitment (mmscf/d) Sink A: Max Capacity (mmscf/d)

8

Optimize Sink Chokes:

Network Optimization Res

Total Revenue ($/d) Location

https://demo.geminus.ai/network
Geminus




What about PDEs, dynamical systems (and other complex
M spatio-temporal processes?)

AEROSPACE
ENGINEERING A\
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Multi-scale, Multi-physics, Complexity : An Example

Non-linear, Multi-scale multi-
physics interactions :

acoustics, flow & reaction p

— pu;
Flow — Large coherent o-| ™ |k
structures + small shear layer ph”—p
dynamics PY;

Reaction — Highly intensive,
distributed & intermittent thin
flame

High sensitivity to parameter
changes

L i

Pressure, Pa 156406 1.54E406 1.58E406 1.62E+06 1.66E+06 1.7E+06

~ OF, .
o0 N oF; L9
ot 0Ox; Ox;

PU; 0 0
pPUU ; Ty 0
’ > Fvi = ’ > H =
puiho ' U;t; +4g; 0
pu;Y, pVi,lYl @,

Highly nonlinear and stiff source term :
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What about PDEs, dynamical systems (and other complex
M spatio-temporal processes?)
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Regressors
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On-line efficiency

Regressors

Neural
Operators

Reduced Order
Models

— =

Embedded
Al

Adaptive
Reduced Order
Models

Physical/Parametric Complexity
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Regressors
How do we

-~ / get here?

Neural
Operators

Reduced Order
Models

— =

Embedded
Al

On-line efficiency

Adaptive
Reduced Order
Models

Bar is high!

Physical/Parametric Complexity 1
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How to get there? Structure in Learning

Encoder

L2 »
(Optional)
o | i ¢ of w]
blocks ' w Y
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Reversible PF ODE
t=0 3 1, t=
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M N Reverse SDE
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Enforcing Physical Consistency in Score-based diffusion models M

=  Minimize physical PDE residual r = F(X, Yy, 77)

» Step in negative gradient direction during SDE / PF ODE yi—1 = Solver(y;,t;) — 2erVyr
solve:

. Forward SDE
dy = f(y,t)dt + g(t)dw
Reversible PF ODE
— 1 t="1r
t=0 dy = [f(y,t) - 592(t)vy logp(y(t))] dit
4 ....... N. ______ N

Reverse SDE
p(y(t =0)) Physical PDE Ldy = [f(v,t)—g*(t)Vy logp(y(t))]dt+g(t)dw}
F(x,y,n) =




Example: Darcy Flow

* Examples of single sample

generation for conditional
input

* All generated samples have

Eps[lIrx)113]

physical residuals similar to
or less than data samples

103 q

102 4

SDE, T=1000, M=0

PF ODE, t=1000,M=0
SDE, t=1500,M=0

PF ODE, t=1500,M=0
SDE, T=2000, M=0
SDE, T=2000, M =25
PF ODE, t=2000,M=0
PF ODE, t=2000,M=1

Epy [lIr(x)1I3]

100 500 1000

Physical consistency steps, N

Data
(pressure)

Surrogate
(pressure)

Difference
(pressure)

Data .
(permeability)
Surrogate .
(permeability)- P

Difference
(permeability)




M Conditional Parameterization |
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Al > Standard dense layer of width w:

f(h; ©) = o(Wh + b),
WeR"™" beR".

» How to fit f(h) = h??
What if W=h, b=0, 0 =17

How can we formalize, generalize this?

Jiayang Xu, Aniruddhe Pradhan, and Karthikeyan Duraisamy (2021). “Conditionally Parameterized, Discretization-Aware Neural
Networks for Mesh-Based Modeling of Physical Systems”. In: Advances in Neural Information Processing Systems 34
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Application to generalized unstructured meshes

Encoder-processor-decoder architecture with CP-dense and CP-message passing layers:
» Flux term modeled by CP-message passing:

W = o ((W,e;) +B) ,hPPMP = S~ wjo ((Wy, [uj;uy])) . (15)

JeN()

» Contrasted with standard message passing with node-edge concatenation:

g = U@ MP __ ;
si= Y o (W1, [uiujiej]) +bq) , hF =0 ((Wa,[uj;si]) + b2) . (16)
JEN(I)
Rollout prediction
]
Finite Volume Encoder Processor Decoder
Discretization
e
» Yy - L ]
L
[
L L]
'\?ﬂ. o o, P
° .
) -y *
| Input u | l Input
Node encoder Edge encoder i
ok - S
A Finite volume cell . | Input g* | | Input 1 | 1:::1:8 xnlulﬂplebloeksg | Input 1 | | Input g |
. Cell-centered quantity q; v M section
¢ [ CP-Dense ] I CP-Dense I Dense Flux term
. Encoded node feature u; N u section
° Processed node feature u ¥ v CP-Dense T Concat with |
Ed t CP-Dense neighbor [ cp-Dense J¢{ cCP-Dense |
—_ ge vector n;; N Output CP-Dense v
Encoded edge feature e;‘} 12 | LN & [_cewp Ak
3 LN Output Aq’
Message passing IM | A:d ' | T £

—>
—>»  Input feature
»  Conditional parameter




M Rocket Combustion

AEROSPACE Pressure Temperature

ENGINEERING
Truth Truth
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CP-GNet CP-GNet

m

Jiayang Xu, Aniruddhe Pradhan, and Karthikeyan Duraisamy (2021). “Conditionally Parameterized, Discretization-Aware Neural
Networks for Mesh-Based Modeling of Physical Systems”. In: Advances in Neural Information Processing Systems 34



Discretization-independent

DISCI’etlzath n‘l ﬂde pen d e ﬂt surrogate modeling over

M complex geometries using

AEROSPACE S u rrogate Mm Od e | | N g hypernetworks and implicit

unﬁggllﬂgfﬁﬁ?m 0 representationsJ Duvall, K
h

Duraisamy, S Pan

O 000 arXiv preprint
u j uq A arXiv:2109.07018
D 0 Oh)
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Transonic Rotor w/Varying Speed and Geometry (DVH)

Loss vs. Epoch

— Airfoil surface pressure distributions, all unseen
—— validation
- DVH
— CFD
©w1073
o
1074
1073
0 1000 2000 3000 4000
epoch
Main Network Hypernetwork pressure ratio effictency
color: rotor speed .;" color: rotor speed 1’/
# Hidden Layers # Nodes # Hidden Layers # Nodes
5 100 5 50 - -
2 3
Hypernetwork inputs: e R° ?; S
Main network inputs: x =[xy ¢]T = =
Predicted variables: q=I[p.puv,wk wEp]T
DVH generalizes well w/varying flow condition, training 7
with 800 randomly selected cases (test on 9,200) ground truth ground truth
COLLEGE OF ENGINEERING Compressor
AEROSPACE ENGINEERING

19
UNIVERSITY OF MICHIGAN Rotor



Optimization objective

Emulator-driven design optimization at varying rotor speed

0.01
= Emulation-based BO (Nominal RPM) = Emulation-based BO (Nominal RPM)
= Emulation-based BO (-4% RPM) = Emulation-based BO (-4% RPM)
0.00 - Emulation-based BO (+4% RPM) = Emulation-based BO (+4% RPM)
’ CFD-based BO (Nominal RPM) 0.00 + == CFD-based BO (Nominal RPM)
CFD-based BO (-4% RPM) ’ -\‘---..--_‘_ —— CFD-based BO (-4% RPM)
CFD-based BO (+4% RPM) 0 . S == CFD-based BO (+4% RPM)
A} Y
—0.01 4 g N ™ ‘\
T —0.01 4\ s \
) | \_ \
g “ ‘-\\ \\
2 \ Ve b
g \‘ Ve -3 o
—0-021 7 -0024 ===
R e N - Q:;‘---
St —————— I “_ =:=:: —————
e = AT B i
—0.03 1 -0.03 "
\N\--h o ‘\5—
\-\-‘ - - -
—0.04 - iy —0.04 - i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Evaluations Cost (Unit of CFD evaluation), after initial DOE
DVH achieves better or similarly-performing designs at a fraction of the online cost
COLLEGE OF ENGINEERING
AEROSPACE ENGINEERING compressor
Rotor 20
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M Embedded Al + Physics S

AEROSPACE
ENGINEERING

ML Augmentation

18 4

16

Physics constraints +

b Physical consistency +
T 121 .
g N Information from data +
1 raining Lata . .
3. A R Interpolation in feature space =
06 ] o Epemen Extrapolation in physical space

00 25 50 75 100 125 150 175 20
Angle of Attack (degrees)




M From detailed analysis model to engine control unit

AEROSPACE -i '
ENGIRELRING ., Anode Channe A non-intrusive
UNIVERSITY OF MICHIGA] Anode Inlet: —! 1 Anode Outlet: approach for
PT U b1 Ha Ny H0 w— T -
T, . ' physics-
! - Anodecot constrained
x . Anode CL learning with
' “1- Membrane . .
§ P Cathode L appllcatlor? to fuel
v cell modeling
01 3 ¥~ Cathode GDL R
Pl e Srivastava, et al.
. TV Cathode Inlet: .
pr O gm0, N, HO RTU Computational
o Cathode Channel MeChanICS, 2023
3D (High fidelity) to Augmented 1D (low-fidelity)
Design to Engine control unit

— Augmented — Augmented

§ | 000 T L., 516
-} 3
£30 215
a 2
5 3
1 ©14!
325 2
E E
3 5134

204

124 e Data
—— Baseline
= n —— Augmented
O‘O sz 0‘4 0‘6 0.8 1.0 0‘0 0'2 04 0.6 OvE 1‘0 0‘0 0'2 04 06 08 1‘0
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https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2

Enforcing structure

for Learning :
“DMD ResNet”

weight layer

relu

F(x)

weight layer

Fx)+x &

relu

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

®.,q4(z) =2AVp, W, 4(®)2 DIV AL
(I)(Z) =P, (Z) Wenc,L + benc,L + (I)svd(z)Wenc,Ly

-

nonlinear ‘orbservables linear observables
‘I’(q)) = \I’nn(q)) + ‘I’svd(q)Wdec,l) y

nonlinear reconstruction linear reconstruction



Enforcing structure for Learning : Stability

We propose : (where (1,...,{p—-1, 01,...,0p €R. )
—oi G ]

Ksta,ble - _Cl . . . ' ’ (5)
' ' (D1
—Cp—1 —02D_

Theorem

VD € N, for any real square diagonalizable matrix K € RP*P that only
has non-positive real part of the eigenvalues D > 2, there exists a set of
(1,...,¢p-1, 01,...,0p € R such that Kgapie is similar to K over R.

Moreover, for any (1,...,(p—-1, 01,...,0p € R, the real part of the
eigenvalue of Kiqpie IS non-positive.

Unconditionally stable, and “expressive” — any diagonalizable matrix

corresponding to a stable Koopman operator can be represented without
loss of information



Use Math + physics + structure for Learning

1 M
MZII‘I’(Q(Xi)) - x*
i=1

(:b(a:) q:>dmd(:1:) + (pnn(w)a
U (@) = Wima(®(2)) + ¥nn(®(2))

A
i
!

Pan. S. & Duraisamy, K., Physics-Informed

1 M Probabilistic Learning of Linear Embeddings of
M Z”f(xz) . VX(I)(XZ.) — ‘I’(Xi)K||2 Non-linear Dynamics With Guaranteed Stability,
M 4 1 SIAM J. of Applied Dynamical Systems, 2020.

1=




Flow over cylinder:
Prediction with
uncertainties

eGaussian white noise added

~184
5
—186
0 50 100 150 200 250 0 50 00 150 200 250
time time
-150
= —200
0 50 100 150 200 250 0 50 100 150 200 250
time time
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H 200
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time time
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Physics-Informed
Probabilistic Learning of
Linear Embeddings of
Non-linear Dynamics
With Guaranteed
Stability, Pan, S., and
Duraisamy, K., SIADS,
2020
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Relevant Efforts at UM MICHIGAN

Centers & Initiatives Center-scale grants

* Center for Data-driven * S15 M Center on Al + Co-design for Energy
Computational Physics [2015-] * $10 M NASA Center on Space weather modeling

* MIDAS Schmidt Al in Science Post * $3.5M NSF Major Research Instrumentation
doc program [2022-] * $5.0M NSF Data Infrastructure Building Blocks

* Initiative on Scientific Foundation  $5.17M NSF CRISP and Toyota Research Institute
models - sciFM.ai [2023-] « $5.8 M Air Force Center of Excellence on Reduced

* Major National Lab presence on Order Modeling
Campus to collaborate on * $5.4 M ARPA-E project on Digital Twins for Nuclear
computational science + Al [2024-] Reactors

* MIDAS Data science Fellowships * $7.5 M MURI on Climate impact on DoD installations
[2015-] + Many Others

February 1, 2024 Harvard Al4Science
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COMPUTATIONAL METHODS, Al & HPC @ U-M

Feb 1, 2024 Harvard Al4Science




MICDE Strategic Thrusts

Scientific Scientific Numerical Hardware/ Algorithms for Formal

Machine Foundation Analysis & Software Co- Quantum Verification
Learning & Al Models High- Design for Computing for
dimensional Computing at Computational
Inference Scale Science

Digitalization

Physics-based Medical applications

National Security

Energy & Climate Sciences

Neuroscience & Neuroengineering

Nanoscale Physics, Chemistry & Engineering




MICDE Catalyst Grants External Grants National Spotlight
Seed funding for future Grant coordination, proposal First mover advantage in
grants and initiatives writing and finding collaborators strategic Initiatives

Faculty Support
Course development, LOS, HPC
resources, administrative support

( Seminars and
LNeiworking Events

Interdisciplinary Collaborations Graduate Student Community
Brining domain scientists and method developers 3 Educational programs (>150 students)
together to solve outstanding problems Scientific Computing Student Club (SC2)




UNIVERSITY OF

MICDE Initiative: SCiFM and GenAl for Science &S

Utilizing innovations in Generative Al models for scientific research

Kicked off by two MICDE Catalyst Grants supporting the development of scaling
laws for training large language models (LLMs) for Molecular Discovery using
Wafer-Scale Computing

Thrust I: Designing LLMs for expediting materials discovery and molecular design
by directly encoding scientific knowledge, applying BERT-based LLMs

Thrust II: Creation of surrogate physics models by fine-tuning foundation models
trained on multiple Partial Differential Equations

2024 INCITE Award from DOE of 200k GPU node-hours on Polaris

February 1, 2024 Harvard Al4Science ‘ |V| | El] E



2024 MICDE Annual Conference MICRIGAR

Topic: Scientific Foundation Models (SciFM)
Dates: April 2nd and 3rd, 2024
Where: Rackham Auditorium, Ann Arbor
SciFM are poised to have a similar transformative impact on
science as Generative Al has had on natural language.
First of its kind dedicated exclusively to the exciting and
nascent field of SciFM
Stellar lineup of speakers and panelists

January 11, 2024 Harvard Al4Science ‘ M | El]E




2024 MICDE Annual Conference Lineup NI

Jason Pruet, Director of National Security Al, Los Alamos National Laboratory

lan T. Foster, Director of Data Science and Learning Division, Argonne National Laboratory

Sanjeev Arora, Director of Princeton Language & Intelligence

Petros Koumoutsakos, Herbert S. Winokur, Jr. Professor of Computing in Science and Engineering, Harvard
Jonathan Carter, Associate Laboratory Director, Computing Sciences, Lawrence Berkeley National Laboratory
Animashree Anandkumar, Bren Prof. of Computing, Caltech

Rajesh Swaminathan, Partner, Khosla Ventures

Jean-Luc Cambier, Director of Research Programs, Office of the Secretary of Defense

Michael Mahoney, Leader of ML and Analytics Group, Lawrence Berkeley National Laboratory & UC Berkeley
Payel Das, Research Staff Member and Manager, Al Science, IBM T. J. Watson Research Center

and many more...
Check https://micde.umich.edu/SciFM24 for more details

February 1, 2024 Harvard Al4Science ‘ |V| | El] E



https://micde.umich.edu/SciFM24

SciFM 24 : Day 1 A

g

I
Hands-on Workshop by TPC HPC E

Since 1987 - Covering the Fastest Computers
in the World and the People Who Run Them
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G TODICS ‘ - - - - ‘ v : -gn : -
Training of 1-Trillion Parameter Scientific Al Begins
© Sectors By Agam Shah

TRILLION PARAMETER s
al lab has started training a massive Al brain that could ultimately
e must-have computing resource for scientific researchers.
C O N S O R I I [ ] M ( I I C) ational Laboratory (ANL) is creating a generative Al model called

and is pouring a giant mass of scientific information into creating

Home  About the TPC  Participating Organizations  Posts is being trained on its Aurora supercomputer, which delivers more
f an exaflop performance at ANL. The system has Intel’s Ponte
PUs, which provide the main computing power.

February 1, 2024 Harvard Al4Science ‘ M | El] E




U-M Generative Al tools

Al Tools ( ):
O U-M GPT (provides access to popular hosted Al models)
O U-M Maizey (using custom datasets for enriched
experience)
O U-M GPT Toolkit (full control over Al environment and

models)
Research ( ):
O Initiative on Scientific Foundation Models:
Training ( )
Check for more information

February 1, 2024 Harvard Al4Science

Generative Artificial
Intelligence Advisory
Committee Report

UNIVERSITY OF
MICHIGAN

MICDE


https://genai.umich.edu/resources/tools
https://genai.umich.edu/resources/research
https://scifm.ai/
https://genai.umich.edu/resources/training
https://genai.umich.edu/

