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What are some successes in “AI for Science” ?

• Materials property descriptions, discovery & design
• Protein structure
• Drug discovery, Genetics
• Imaging and segmentation (in most discipline)
• Clustering/Classification (in most disciplines)

• Discreteness (or “discretizability”) of underlying spaces
 è Text, graphs, categorization, binarization, sequences, etc
• “Discoverability” of somewhat universal features
• Diverse, (mostly) complete and high quality data
• Data standardization
• Modularity of tasks
• Deficiencies in existing methods!
• We know what questions to ask !!

Why the above problems?
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Context
• Goal to maximize revenue by 

finding ideal gas 
distribution across multiple sales 
points

• Limited by short decision time 
scales, network complexity, and 
sensor data sparseness

Case study
Optimizing gas 
delivery in complex 
well networks

Solution 
• AI models matching 

simulation accuracy used for 
rapid ”what-if” analysis and 
optimization of distribution to 
multiple sales points

• Intelligent advisor app 
powered by AI model provides 
interactive capabilities, in real 
time 

Impact
• Ability to optimize online in short decision time frames (near real time) 

handling high dimensionality
• Easily adaptable to changes in network topologyhttps://demo.geminus.ai/network

Dimensional
ity

168 inputs, 185 
outputs
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• Limited by short decision time 
scales, network complexity, and 
sensor data sparseness

Case study
Optimizing gas 
delivery in complex 
well networks

Solution 
• AI models matching 

simulation accuracy used for 
rapid ”what-if” analysis and 
optimization of distribution to 
multiple sales points

• Intelligent advisor app 
powered by AI model provides 
interactive capabilities, in real 
time 

Impact
• Ability to optimize online in short decision time frames (near real time) 

handling high dimensionality
• Easily adaptable to changes in network topologyhttps://demo.geminus.ai/network

Dimensionality 168 control inputs
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Interactive Demo

Geminus-powered 
intelligent advisor for 
well network 
optimization

Instant what-if exploration 
of network Behavior

Real-time view into 
network pressure profiles

Robust optimization 
in seconds

Flexible definitions of 
optimization parameters for 

a changing environment

https://demo.geminus.ai/network
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Neural 
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Reduced Order 
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Embedded 
AI + PDEs

What about PDEs, dynamical systems (and other complex 
spatio-temporal processes?)



Multi-scale, Multi-physics, Complexity : An Example
• Non-linear, Multi-scale multi-

physics interactions : 
acoustics, flow & reaction

• Flow – Large coherent 
structures + small shear layer 
dynamics

• Reaction – Highly intensive, 
distributed & intermittent thin 
flame

• High sensitivity to parameter 
changes
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How do we 
get here?

Bar is high!
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How to get there? Structure in Learning



§ Minimize physical PDE residual

§ Step in negative gradient direction during SDE / PF ODE 
solve:

Enforcing Physical Consistency in Score-based diffusion models



Example: Darcy Flow

• Examples of single sample 
generation for conditional 
input 

• All generated samples have 
physical residuals similar to 
or less than data samples

Data
 (pressure)

Surrogate
 (pressure)

Difference
 (pressure)

Data
   (permeability)

Surrogate 
  (permeability)

Difference
 (permeability)
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What if W = h,  b=0,  σ = 1?

How can we formalize, generalize this? 
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Application to generalized unstructured meshes



17

Rocket Combustion
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Discretization-independent 
surrogate modeling over 
complex geometries using 
hypernetworks and implicit 
representationsJ Duvall, K 
Duraisamy, S Pan
arXiv preprint 
arXiv:2109.07018

Discretization-independent 
Surrogate modeling

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8F2oaQwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=8F2oaQwAAAAJ:F9fV5C73w3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8F2oaQwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=8F2oaQwAAAAJ:F9fV5C73w3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8F2oaQwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=8F2oaQwAAAAJ:F9fV5C73w3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8F2oaQwAAAAJ&sortby=pubdate&authuser=2&citation_for_view=8F2oaQwAAAAJ:F9fV5C73w3QC


Transonic Rotor w/Varying Speed and Geometry (DVH) 
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Main Network Hypernetwork

# Hidden Layers # Nodes # Hidden Layers # Nodes

5 100 5 50

Hypernetwork inputs: 𝝁 ∈ ℝ!
Main network inputs:  𝐱" = 𝑥, 𝑦, 𝜙 𝑻

Predicted variables:  𝐪 = 𝜌, 𝑝, 𝑢, 𝑣, 𝑤, 𝑘, 𝜔, 𝐸$𝜌 %

Airfoil surface pressure distributions, all unseen

DVH 
CFD

DVH generalizes well w/varying flow condition, training 
with 800 randomly selected cases (test on 9,200)

Motivation Objectives Contributions Methods Poisson Vehicle 
Aero

Compressor 
Rotor

Ahmed 
Body

Concluding



Emulator-driven design optimization at varying rotor speed
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DVH achieves better or similarly-performing designs at a fraction of the online cost

Motivation Objectives Contributions Methods Poisson Vehicle 
Aero

Compressor 
Rotor

Ahmed 
Body

Concluding
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Physics constraints +
Physical consistency + 

Information from data +
Interpolation in feature space = 
Extrapolation in physical space

ML Augmentation

Embedded AI + Physics



3D (High fidelity) to Augmented 1D (low-fidelity) 
= 
Design to Engine control unit

From detailed analysis model to engine control unit 

A non-intrusive 
approach for 
physics-
constrained 
learning with 
application to fuel 
cell modeling
Srivastava, et al. 
Computational 
Mechanics, 2023

https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2
https://scholar.google.com/scholar?oi=bibs&cluster=7313352329424084125&btnI=1&hl=en&authuser=2


Enforcing structure
for Learning : 
“DMD ResNet”



Enforcing structure for Learning : Stability



x

f(x)

Pan. S. & Duraisamy, K., Physics-Informed 
Probabilistic Learning of Linear Embeddings of 
Non-linear Dynamics With Guaranteed Stability, 
SIAM J. of Applied Dynamical Systems, 2020.

Use Math + physics + structure for Learning



Flow over cylinder:
Prediction with 
uncertainties

•Gaussian white noise added 

Physics-Informed 
Probabilistic Learning of 
Linear Embeddings of 
Non-linear Dynamics 
With Guaranteed 
Stability, Pan, S., and 
Duraisamy, K., SIADS, 
2020
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Relevant Efforts at UM
Center-scale grants
• $15 M Center on AI + Co-design for Energy
• $10 M NASA Center on Space weather modeling
• $3.5M NSF Major Research Instrumentation
• $5.0M NSF Data Infrastructure Building Blocks
• $5.17M NSF CRISP and Toyota Research Institute
• $5.8 M Air Force Center of Excellence on Reduced 

Order Modeling
• $5.4 M ARPA-E project on Digital Twins for Nuclear 

Reactors
• $7.5 M MURI on Climate impact on DoD installations
+ Many Others

Centers & Initiatives
• Center for Data-driven 

Computational Physics [2015-]
• MIDAS Schmidt AI in Science Post 

doc program [2022-]
• Initiative on Scientific Foundation 

models  - sciFM.ai [2023-]
• Major National Lab presence on 

Campus to collaborate on 
computational science + AI [2024-]
• MIDAS Data science Fellowships 

[2015-]

Harvard AI4ScienceFebruary 1, 2024



Harvard AI4Science

COMPUTATIONAL METHODS, AI & HPC @ U-M

Feb 1, 2024



Numerical 
Analysis & 

High-
dimensional 

Inference

Algorithms for 
Quantum 

Computing

Hardware/ 
Software Co-

Design for 
Computing at 

Scale

Scientific 
Machine 

Learning & AI

Formal 
Verification 

for 
Computational 

Science

Scientific 
Foundation 

Models

Digitalization

Physics-based Medical applications

National Security

Energy & Climate Sciences 

Neuroscience & Neuroengineering

Nanoscale Physics, Chemistry & Engineering

MICDE Strategic Thrusts
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MICDE Initiative: SciFM and GenAI for Science

Harvard AI4ScienceFebruary 1, 2024

● Utilizing innovations in Generative AI models for scientific research
● Kicked off by two MICDE Catalyst Grants supporting the development of scaling 

laws for training large language models (LLMs) for Molecular Discovery using 
Wafer-Scale Computing

● Thrust I: Designing LLMs for expediting materials discovery and molecular design 
by directly encoding scientific knowledge, applying BERT-based LLMs

● Thrust II: Creation of surrogate physics models by fine-tuning foundation models 
trained on multiple Partial Differential Equations

● 2024 INCITE Award from DOE of 200k GPU node-hours on Polaris
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2024 MICDE Annual Conference

Harvard AI4ScienceJanuary 11, 2024

Topic: Scientific Foundation Models (SciFM)
Dates: April 2nd and 3rd, 2024
Where: Rackham Auditorium, Ann Arbor
SciFM are poised to have a similar transformative impact on 
science as Generative AI has had on natural language.
First of its kind dedicated exclusively to the exciting and 
nascent field of SciFM
Stellar lineup of speakers and panelists
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2024 MICDE Annual Conference Lineup

Harvard AI4ScienceFebruary 1, 2024

Jason Pruet, Director of National Security AI, Los Alamos National Laboratory
Ian T. Foster, Director of Data Science and Learning Division, Argonne National Laboratory
Sanjeev Arora, Director of Princeton Language & Intelligence
Petros Koumoutsakos, Herbert S. Winokur, Jr. Professor of Computing in Science and Engineering, Harvard 
Jonathan Carter, Associate Laboratory Director, Computing Sciences, Lawrence Berkeley National Laboratory
Animashree Anandkumar, Bren Prof. of Computing, Caltech 
Rajesh Swaminathan, Partner, Khosla Ventures
Jean-Luc Cambier, Director of Research Programs, Office of the Secretary of Defense
Michael Mahoney, Leader of ML and Analytics Group, Lawrence Berkeley National Laboratory & UC Berkeley
Payel Das, Research Staff Member and Manager, AI Science, IBM T. J. Watson Research Center

and many more…
Check https://micde.umich.edu/SciFM24 for more details

https://micde.umich.edu/SciFM24
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SciFM 24 : Day 1

Harvard AI4ScienceFebruary 1, 2024

Hands-on Workshop by TPC



35

U-M Generative AI tools

Harvard AI4ScienceFebruary 1, 2024

AI Tools (https://genai.umich.edu/resources/tools):
○ U-M GPT (provides access to popular hosted AI models)
○ U-M Maizey (using custom datasets for enriched 

experience)
○ U-M GPT Toolkit (full control over AI environment and 

models)
Research (https://genai.umich.edu/resources/research):
○ Initiative on Scientific Foundation Models: sciFM.ai

Training (https://genai.umich.edu/resources/training)
Check https://genai.umich.edu/ for more information
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https://genai.umich.edu/resources/tools
https://genai.umich.edu/resources/research
https://scifm.ai/
https://genai.umich.edu/resources/training
https://genai.umich.edu/

