AIM 5

Iann\Vare
}%;",é/"
= u "’” /"
A picture is worth a thousand GRS/
] u U @g&'»
data points: Al imaging for ,VZ{@W»<A‘(
R
cancer care , 'é;%% A
Vit
=7
. 7o A
Benjamin H. Kann, MD %,é{f:‘—;—ﬁ',«
Assistant Professor, Radiation Oncology \r}f?}?ﬁg\‘
Harvard Medical School | Dana-Farber Cancer Institute | . E{fgﬁi”/’ﬂ{":ﬁ_
Brigham and Women'’s Hospital | Boston Children’s Hospita gi{ﬁ,,}“ﬁ!yylA
Artificial Intelligence in Medicine (AIM) Program %’iﬂr
BRIGHAM AND - .
WOMEN’S HOSPITAL 1} Mass General Brigham e A VARD

-~ MEDICAL SCHOOL



Disclosures

Funding:
* NIH/NIDCR K08 Mentored Clinical Scientist Research Career Development
Award (KDEO030216A)
« RSNA Research Scholar Award
« JCRT Foundation
« ECOG-ACRIN Clinical Research Fellowship
* DFCI Brain SPORE
« Botha Chan LGG Consortium
* ViewRay Mridian / BWH Departmental Grant

- Dana-Farber = \ Boston BRIGHAM AND Y HARVARD
» Cancer Institute E,‘ Childrens WOMEN'S HOSPITAL f&}‘; MEDICAL SCHOOL
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Al touchpoints down the cancer care pathway

PATIENT PATHWAY
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Images as data

Radiology
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Traditional radiomics versus deep learning

a Predefined engineered features + traditional machine learning

Feature engineering

.-Illl' Selection Classification
Histogram
—@ — I  — / _—
T &_»
Texture Shape
Expert knowledge
b Deep learning
Input Hidden layers Output

Increasingly higher-level features

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Hosny et al, Nat Rev Cancer 2018



A picture Is worth a thousand data points
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A picture Is worth a thousand data points
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A picture Is worth a thousand data points
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Achievement: Narrow-task computer vision
Tumor and organ segmentation
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A new era: rapid volumetric assessment and tracking

with Al — case study in pLGG
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Median follow-up: 9.1 yrs
(range: 0.4 — 29.7 yrs)
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Phenotypes:
Regressors and Progressors
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Phenotype: Waxing and Waning
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Temporalis muscle (TM) segmentation: cross-

sectional area and thickness

Cancer- and treatment-related cachexia/sarcopenia are major
problems in pediatric CNS malignancies

TM thickness is a validated prognosticator and surrogate for
cachexia/sarcopenia in adult malignancies (GBM, CNS
lymphoma, head/neck)

pediatric cancer patients

TM analysis may be helpful in stratifying risk and driving early

n There are currently no good predictive markers for cachexia in
V interventions

Furtner J, Nenning KH, Roetzer T, Gesperger J, Seebrecht L, Weber M, Grams A, Leber SL, Marhold F, Sherif C, Trenkler J, Kiesel B, Widhalm G, Asenbaum U, Woitek R, Berghoff AS, Prayer
D, Langs G, Preusser M, Wohrer A. Evaluation of the Temporal Muscle Thickness as an Independent Prognostic Biomarker in Patients with Primary Central Nervous System Lymphoma.
Cancers (Basel). 2021 Feb 2;13(3):566. doi: 10.3390/cancers13030566. PMID: 33540564; PMCID: PMC7867149.

Lee, B., Bae, Y.J., Jeong, WJ. et al. Temporalis muscle thickness as an indicator of sarcopenia predicts progression-free survival in head and neck squamous

cell carcinoma. Sci Rep 11, 19717 (2021). https://doi.org/10.1038/s41598-021-99201-3
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Automated temporalis muscle quantification and
growth charts for children through adulthood
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Temporalis muscle growth charts
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Achievement: Narrow-task computer vision
Cancer screening and risk predlctlon with BIG data
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Achievement: Narrow-task computer vision
Cancer screening and risk prediction with BIG data
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New frontier: Narrow-task computer vision with SMALL data

« Many of the most detrimental cancers are less common

« Can Al still be applied?

Expert-level pediatric brain tumor segmentation in a limited data scenario with
stepwise transfer learning

Aidan Boyd, =) Zezhong Ye, 0 Sanjay Prabhu, Michael C.Tjong,Yining Zha, ©) Anna Zapaishchykova,
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New frontier: the Al translational gap
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New frontier: the Al translational gap
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New frontier: the Al translational gap —
clinical utility
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New frontier: LLMs and patient care

You are an oncologist. An 8 year old boy presents with seizures and headaches, and on
MR imaging is found to have a 6 cm tumor in the right temporal lobe. The tumor is
biopsied and found to be consistent with a low grade glioma with a BRAF fusion mutation.
How you would treat this patient?

)

The management of a pediatric patient with a low-grade glioma with a BRAF fusion
mutation typically involves a multimodal approach that includes surgery, radiation therapy,
and/or chemotherapy. The specific treatment plan will depend on several factors,
including the tumor size and location, the patient's age and overall health, and the extent

of the tumor.

Surgery is usually the first step in treatment, with the goal of removing as much of the
tumor as possible without causing significant damage to the surrounding brain tissue. In
some cases, complete removal of the tumor may not be possible due to its location in the
brain or the risk of damage to critical brain structures. In these situations, the
neurosurgeon may perform a biopsy to confirm the diagnosis and relieve pressure on the
brain caused by the tumor.

After surgery, the patient may undergo radiation therapy to help prevent the tumor from
growing back. Radiation therapy is typically delivered in small doses over a period of
several weeks to minimize side effects. In some cases, chemotherapy may be used
instead of or in addition to radiation therapy, especially if the tumor is large or has spread

to other parts of the brain.

Because the patient in this case is only 8 years old, the treatment team will need to take
into account the potential long-term side effects of treatment on his developing brain. For
example, radiation therapy to the brain can increase the risk of cognitive problems and
secondary tumors later in life. Chemotherapy can also have significant side effects,

including nausea, vomiting, and hair loss.




New frontier: LLMs and

Use of Artificial Intelligence Chatbots
for Cancer Treatment Information

Shan Chen, MS'; Benjamin H. Kann, MD'; Michael B. Foote, MDZ; Hugo J. W. L. Aerts, PhD; Guergana
K. Savova, PhD3; Raymond H. Mak, MD?; Danielle S. Bitterman, MD!
» Author Affiliations | Article Information

JAMA Oncol. 2023;9(10):1459-1462. doi:10.1001/jamaoncol.2023.2954

1/3 of ChatGPT responses
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make my cancer
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13% of recommended
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patient care
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Using ChatGPT to evaluate cancer myths and misconceptions: artificial intelligence
and cancer information
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No. Although research has shown that cancer cells 76 12.7 There is no scientific evidence to support the idea
consume more sugar (glucose) than normal cells, that eating sugar can directly cause cancer or make
no studies have shown that eating sugar will make it worse. However, there is some evidence to suggest
your cancer worse or that, if you stop eating sugar, that high sugar intake may be associated with an
your cancer will shrink or disappear. However, a increased risk of certain types of cancer, such as
high-sugar diet may contribute to excess weight breast and celon cancer. This is because a diet high
gain, and obesity is associated with an increased in sugar is often associated with being overweight
risk of developing several types of cancer. For more or obese, and carrying excess weight has been
information, see the NCI fact sheet on Obesity and linked to an increased risk of cancer. Additionally,
Cancer. high sugar intake may be linked to inflammation in

the bedy, which has also been associated with an
increased risk of cancer. However, it is impoertant to
note that the link between sugar intake and cancer
risk is still being studied, and more research is
needed to understand the relationship between
these factors.

tis generally recommended te limit your intake of
added sugars, such as those found in sugary drinks,
sweets, and baked goods, as part of a healthy diet.
This is because a diet high in added sugars has been
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New frontier: LLMs and patient care

Article | Open access | Published: 11 January 2024

Large language models to identify social determinants
of health in electronic health records
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Comparing Physician and Artificial Intelligence
Chatbot Responses to Patient Questions Posted to a
Public Social Media Forum
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