Al for PDEs

Paris Perdikaris University of Pennsylvania Microsoft Research Al4Science email: pgp@seas.upenn.edu

*work performed at the University of Pennsylvania

Al For Science Workshop Harvard University February 1, 2024

ntial

They model local, causal and continuous relationships in spatio-temporal fields

Shake

Earthquake prediction

Heart modeling Weather prediction

The Finite Element Method

Linear Static and Dynamic Finite Element Analysis

Thomas J. R. Hughes

Decades of software development
Specialized solvers (~10⁶ lines of C++ code)
High simulation cost (~days on 10⁴ cores)
Solving parametrized problems is prohibitive

Highlights: Weather Forecasting

Neural Operators

Challenges: Autoregressive Rollouts

• Training on MSE fails to accurately capture low-amplitude/high-frequency modes.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., & Brandstetter, J. (2023). Pde-refiner: Achieving accurate long rollouts with neural pde solvers.

Challenges: Autoregressive Rollouts

High-Correlation Rollout Times on the Kuramoto-Sivashinsky equation

Challenges: PDEs on Complex Geometries

ightarrow

Encode geometry via appropriate coordinate embeddings (=Laplace-Beltrami eigenfunctions)

Challenges: PDEs on Complex Geometries

Costabal, F. S., Pezzuto, S., & Perdikaris, P. (2024). Δ-PINNs: Physics-informed neural networks on complex geometries.

Challenges: Data Efficiency

Data augmentation

- Multi-fidelity data-sets
- Lie groups & symmetry transformations

Inductive bias

- Equivariant layers
- Clifford layers
- Differentiable PDE solver layers

- Current data-driven frameworks require $\mathcal{O}(10^3)$ labelled examples.
- This can be prohibitive for applications where
 - the cost of data acquisition is high.

Transfer learning

- Unsupervised pretraining
- Supervised fine-tuning

Thank you for your attention! Questions?