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Partial Differential Equations (PDEs)

• PDEs describe the evolution of continuous fields (e.g. velocity, temperature)
• They model local, causal and continuous relationships in spatio-temporal fields
•

Partial differential equations

PDEs and ODEs are used throughout the sciences to describe the evolution of systems of interest.
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• Decades of software development
• Specialized solvers (~106 lines of C++ code)
• High simulation cost (~days on 104 cores)
• Solving parametrized problems is prohibitive



Highlights:  Weather Forecasting
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Challenges:  Autoregressive Rollouts
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• Training on MSE fails to accurately capture low-amplitude/high-frequency modes.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., & Brandstetter, J. (2023). Pde-refiner: Achieving accurate long rollouts with neural pde solvers.
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ûk+1(t)✏̂k

Refined
prediction

Input
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Figure 2: Refinement process of PDE-Refiner during inference. Starting from an initial prediction û1(t), PDE-Refiner
uses an iterative refinement process to improve its prediction. Each step represents a denoising process, where the model
takes as input the previous step’s prediction uk(t) and tries to reconstruct added noise. By decreasing the noise variance
�2
k over the K refinement steps, PDE-Refiner focuses on all frequencies equally, including low-amplitude information.

over refinement steps, the model focuses on varying amplitude levels. With the first steps ensuring that high-amplitude
information is captured accurately, the later steps focus on low-amplitude information, typically corresponding to
the non-dominant frequencies. Generally, we find that an exponential decrease, i.e. �k = �k/K

min with �min being the
minimum noise standard deviation, works well. The value of �min is chosen based on the frequency spectrum of the
given data. For example, for the KS equation, we use �2

min = 2 · 10�7. We train the model by denoising ground truth
data at different refinement steps:

Lk(u, t) = E✏k⇠N (0,1)

⇥
k✏k � NO (u(t) + �k✏k, u(t � �t), k) k22

⇤
(4)

Crucially, by using ground truth samples in the refinement process during training, the model learns to focus on only
predicting information with a magnitude below the noise level �k and ignore potentially larger errors that, during
inference, could have occurred in previous steps. To train all refinement steps equally well, we uniformly sample k for
each training example: L(u, t) = Ek⇠U(0,K)

⇥
Lk(u, t)

⇤
.

At inference time, we predict a solution u(t) from u(t � �t) by performing the K refinement steps, where we
sequentially use the prediction of a refinement step as the input to the next step. While the process allows for any noise
distribution, independent Gaussian noise has the preferable property that it is uniform across frequencies. Therefore, it
removes information equally for all frequencies, while also creating a prediction target that focuses on all frequencies
equally. We empirically verify in Section 4.1 that PDE-Refiner even improves on low frequencies with small amplitudes.

3.1 Formulating PDE-Refiner as a Diffusion Model

Denoising processes have been most famously used in diffusion models as well [12, 29–31, 61, 69, 77]. Denoising
diffusion probabilistic models (DDPM) randomly sample a noise variable x0 ⇠ N (0, I) and sequentially denoise it
until the final prediction, xK , is distributed according to the data:

p✓(x0:K) := p(x0)
K�1Y

k=0

p✓(xk+1|xk), p✓(xk+1|xk) = N (xk+1;µ✓(xk, k),⌃✓(xk, k)) , (5)

where K is the number of diffusion steps. For neural PDE solving, one would want p✓(xK) to model the distribution
over solutions, xK = u(t), while being conditioned on the previous time step u(t � �t), i.e., p✓(u(t)|u(t � �t)). For
example, Lienen et al. [51] recently proposed DDPMs for modeling 3D turbulent flows due to the flows’ unpredictable
behavior. Despite the similar use of a denoising process, PDE-Refiner sets itself apart from standard DDPMs in several
key aspects. First, diffusion models typically aim to model diverse, multi-modal distributions like in image generation,
while the PDE solutions we consider here are deterministic. This necessitates extremely accurate predictions with only
minuscule errors. PDE-Refiner accommodates this by employing an exponentially decreasing noise scheduler with a
very low minimum noise variance �2

min, decreasing much faster and further than common diffusion schedulers. Second,
our goal with PDE-Refiner is not only to model a realistic-looking solution, but also achieve high accuracy across the
entire frequency spectrum. Third, we apply PDE-Refiner autoregressively to generate long trajectories. Since neural

4
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Figure 2: Traditional PINNs vs. �-PINNs architecture. In traditional PINNs, the input layer is the vector of coordinates. With �-PINN, the input
layer is the value of the eigenfunctions at the coordinate of interest. In this way we can encode much more information about the geometry.

2.3. Physics-informed neural networks on manifolds

We propose to represent the position of a point in the manifold by N eigenfunctions of the Laplace-Bel-
trami operator associated with the N eigenfunctions associated with the N lowest eigenvalues, such that vi =
[v1(xi), v2(xi), ..., vN(xi)]. Now, instead of parametrizing the neural network with the Euclidean position, we use:

u ⇡ û = NN(v(x), ✓).

Since v varies smoothly in the manifold, intrinsically close points will be also close in the space v, as shown in
Figure 2.)

Another interpretation of the proposed method is that we are constructing features or positional encodings for
points in the manifold. Then, the approximation of the solution û can be seen as a non-linear combination of these
features. In our case, the eigenfunctions represent features of increasing frequency, as seen in Figure 1. A similar con-
cept has been proposed for Cartesian domains with Fourier feature mappings [50, 54]. Here, the Cartesian coordinates
are transformed with sine and cosine functions, which have random frequencies that can be tuned for the problem of
interest. The main di↵erence is that in our method the frequencies are given by the eigenfunctions, and are defined in
the manifold where we want to solve the problem. We can select di↵erent eigenfunctions depending on the nature of
the problem, where high frequency problems might need a larger amount of eigenfunctions.

The main challenge of our methodology is that the di↵erential operators cannot be computed directly from the
neural network via automatic di↵erentiation. Since the eigenfunctions cannot be computed in closed form for an
arbitrary manifold, we have a map between x and v that is defined using finite elements. The only way to di↵erentiate
the eigenfunctions v with respect to the position x is again by using finite elements. Therefore, we use this numerical
approximation of the di↵erential operators that are required to compute the PDE operator N[·]. Commonly used
operators, such as the gradient and the Laplacian can be easily computed with linear finite elements. We also note
that one could employ the chain rule to compute, for example, the gradient, such that rxû = rvû ·rxv. The term rvû

can be computed with automatic di↵erentiation since it only depends on the neural network, and the second term rxv

needs to be computed with finite elements. This is done in Sec. 3.6, for instance. We found small advantages with this
approach, and it becomes cumbersome for second order operators.

Alternatively, we use the neural network predictions at the nodal locations and use finite elements to evaluate the
operator. In other words, we apply the di↵erential operators to the piecewise-linear interpolant of the neural network.
We define the nodal values of the interpolant, denoted by Ihû as follows:

�
Ihû
�
i

:= û(xi) = NN(v(xi), ✓).

For neural networks with di↵erentiable activation functions, the interpolant approximates the NN with a O(h2)-error
in the infinity norm [38]. To approximate the gradient rxû, a piecewise-constant function on each triangular element
of the mesh, we simply use the formula

rxû|e ⇡ rxIhû|e = Be
· [û1, û2, û3]T , (6)

5

Challenges:  PDEs on Complex Geometries

• Encode geometry via appropriate coordinate embeddings (=Laplace-Beltrami eigenfunctions)
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ground truth-PINN� source term f

 [-]u
-0.16 0.034

Figure 9: Solving a partial di↵erential equation on a large mesh. We train �-PINN on a mesh with 99,970 triangles and 49,987 nodes. On the
left, is the approximation of �-PINN of Eq. (16), center is the finite element solution, considered the ground truth, and right the source term form
the screened Poisson Eq. (16).

3.5. Hyperelasticity

Next, we consider a hyperelasticity problem [19]. Let u : ⌦0 ! R2 be the displacement field for a planar shape
⌦0 ⇢ R2. The domain is \-shaped, formed by two semicircles of radius 1 and 0.2, respectively, and two arms of
length 2, as shown in Figure 10. We seek for the displacement that minimizes the strain energy

E(u) =
Z

⌦0

W(F) dx, W(F) = µ
�
I1 � 2 � 2 ln J

�
+ �(J � 1)2, (19)

where F = I + ru is the deformation gradient, I1(F) := tr(FT F) is the first invariant, and J = det F. The positive
numbers µ and � are material parameters, henceforth set to unity. The energy forms the MSEPDE term. Using the
same notation as in the previous section, we can approximate the energy as:

Ê(û) =
RX

r=1

ArW(F̂r), F̂r = I + Be
û|e (20)

where Ar is the area of the triangle r, F̂r is the deformation gradient at the barycenter of the triangle r, Be is the
gradient operator defined in Appendix A, and û|e are the displacements in the x and y directions in the nodes of the
triangle predicted by the neural network. We also apply Dirichlet boundary conditions

u|�` = [0,��]T , u|�r
= [0,+�]T , (21)
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Costabal, F. S., Pezzuto, S., & Perdikaris, P. (2024). Δ-PINNs: Physics-informed neural networks on complex geometries.



• Current data-driven frameworks require             

labelled examples.

• This can be prohibitive for applications where 

the cost of data acquisition is high.

<latexit sha1_base64="KJKwtPFzSxInHdWHWdfWrKZmHiM=">AAACC3icjVDLSsNAFJ34rPGV6tLNYBHqpiRa1GXBTXdWsA9oY5lMJ+3QmUmYmSgl5BP8BLf6Ae7ErR/h2h9x0nZhRcEDFw7n3Ms9nCBmVGnX/bCWlldW19YLG/bm1vbOrlPca6kokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjC9zv31HpKKRuNGTmPgcDQUNKUbaSH2n2ONIjzBi6VVW9tzb0+O+U/Iq7hTwb1ICczT6zmdvEOGEE6ExQ0p1PTfWfoqkppiRzO4lisQIj9GQdA0ViBPlp9PoGTwyygCGkTQjNJyq3y9SxJWa8MBs5kHVTy8Xf/O6iQ4v/JSKONFE4NmjMGFQRzDvAQ6oJFiziSEIS2qyQjxCEmFt2rIX3gQ8s//XSuuk4p1VqtfVUq0+76cADsAhKAMPnIMaqIMGaAIM7sEjeALP1oP1Yr1ab7PVJWt+sw8WYL1/Aftfmd0=</latexit>

O(103)

Challenges:  Data Efficiency

Data augmentation

• Multi-fidelity data-sets

• Lie groups & symmetry transformations

Inductive bias

• Equivariant layers

• Clifford layers

• Differentiable PDE solver layers

Soft constraints

• PDE residual penalties

Transfer learning

• Unsupervised pretraining

• Supervised fine-tuning



Thank you for your attention! Questions?


